■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■ ▪ ▫ Main [01] □ ⣀⣠⣤⣴⣶⣶⣶⣦⣤⣄⣀ ▫ ┌﴾─♦ Gabriel Putnam ﴿── ⢀⠴⢜⡻⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣦⣄ ▪ └┬─────◊─□────────────────────────────◊─□────────────────────────────□─◊ ⣒⣓⣪⣬⡫⡚⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣧⡀ ■ ├──♦: Email: gabriel putnam at gmail ⣀⠈⣙⡛⠿⠿⣥⡯⠅⠉⠉⠛⠿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣆ ▪ ├─┬♦: Google Scholar: G. C. Putnam ⡐⢉⠥⡔⣮⠀⠀⠐⡀⠀⢤⣴⣶⣦⡀⠘⣿⣿⣿⣿⡟⣿⣿⣿⣿⠛⣿⣆ ▫ │ └───🔗: https://scholar.google.com/citations?user=dkY4WRcAAAAJ&hl=en ⢠⠁⠀⣰⠃⠸⡅⢷⣼⡄⠀⠀⠙⠛⠻⢧⢀⣛⣭⣽⠶⠚⠛⢛⡏⢶⣵⣜⢿⡄ □ ├─┬♦: Wikipedia: Araesmojo ⣸⣸⣇⡌⠧⣵⡁⠬⣰⡇⠀⠀⠀⠧⠀⣴⣰⣤⣴⣦⡻⣶⣶⣻⣤⣸⣿⣿⣎⢧ ▫ │ └───🔗: https://en.wikipedia.org/wiki/User:Araesmojo ⣏⡘⣟⣧⡘⣬⣃⣰⣏⡓⡄⠀⠀⢨⣵⠊⠀⠉⢿⣿⣿⣿⣝⣿⣿⣿⣿⣿⣿⣿ ▪ ├─────◊─□────────────────────────────◊─□────────────────────────────□─◊ ⢹⡯⣽⣿⣿⣯⣽⡾⣍⠻⣿⠀⠀⠈⢀⣆⠹⣷⣇⢻⣯⣼⡿⣿⣿⣿⣿⣿⣿⡟ ■ ├─┬♦: Stack Overflow: G. Putnam ⠘⣿⣿⣿⣻⣿⣿⠿⠟⠋⠀⠀⠀⡀⠿⢟⣫⣶⡪⣬⣭⣈⠺⡎⣎⢻⣽⣿⣿⠃ ▪ │ └───🔗: https://stackexchange.com/users/15219472/g-putnam ⢹⠀⢰⠟⠋⡀⡀⠀⣀⣀⣠⣶⣶⣾⣿⣿⣿⣷⢣⠙⢹⠿⣶⣍⠢⠹⡟⡎ ▫ ├─┬♦: Hacker News: araes ⠳⡈⠂⢂⠛⠗⠬⣾⣿⣿⣿⣿⣿⣿⣿⣿⣷⣿⠀⠀⠈⠵⣿⢟⣶⠁ □ │ └───🔗: https://news.ycombinator.com/user?id=araes ⠘⢲⣄⠀⠀⠹⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡂⠀⠀⠀⠀⡰⠁ ▫ └┬┬♦: Github: araesmojo-eng ⠈⠠⣀⠀⠉⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀⣴⣿⠆⠊ ▪ │└───🔗: https://github.com/araesmojo-eng ⠁⠊⠙⠿⠿⠿⠿⠿⡿⠿⠟⠛⠐⠉ ▫ └───◊─□─────────────────────────────◊─□────────────────────────────□─◊ ▪ ■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■ ▪ ▫ Variation of my original website that avoids using HTML, CSS, and JS entirely for even further simplification. □ Original website at: https://araesmojo-eng.github.io/ or https://araesmojo-eng.github.io/araesmojo-html/ (noCSS) ▪ ■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■ ▫ □ 📄: Resume [02] ▫ ⭐: Project [03] ▪ ■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■▪▫□▫▪■ • ● ┌﴾─♦ Resume [02] ﴿── • └┬─────◊─□──────────────────◊─□────□─◊ ◦ ├──🤵: Skills [02SKLS] ○ ├──💼: Work Experience [02WRK] ◦ ├──📜: Publications [02PUB] • ├──🎓: Education [02EDU] ● ├──🏆: Professional Awards [02PRAWD] • ├──🥇: Academic Awards [02ACAWD] ◦ └─┬💬: Languages [02LNG] ○ └───◊─□──────────────────◊─□────□─◊ ◦ •●•◦○◦•●•◦○◦•●•◦○◦•●•◦○◦•●•◦○◦•●•◦○◦•●•◦○ ● • 🤵 Skills [02SKLS] ◦ ○•●•◦○◦•●•◦○◦•●•◦○◦•● ◦ • ┌╫─◁ 🤵 Management - Contract Leadership, Project Leadership, Contract Board Seat ╟── ● └┬─────◍─◩──────────────────────────────────────────────────────────────────────◪─◍ • ├──🏢: NASA MSFC Contractor Lead, 30+ person contract ◦ ├──📋: NASA Project Lead, 2-50+ person, Liftoff Debris Risk ○ ├──💼: Board seat on ESTS and ESSSA contracts (NASA MSFC, 1500-2000 employees) ◦ ├──🤝: Headed NASA working groups • ├──🚀: Shuttle and SLS management briefings on vehicle risk ● ├──❗ : Systems Engineering and risk assessment / management / buyoff • ├──🕵🏻: Employee Hire / Fire ◦ ├──🗊: Multi-layer .gov projects (Agency / Program / Project / Team interactions) ○ ├──🏛: US .gov Bid / Proposals ◦ └─┬🗃: US .gov Grants / Proposals / SAM.gov / UEI • └───◍─◩──────────────────────────────────────────────────────────────────────◪─◍ ● • ┌╫─◁ 💻 Software - Open GL, HTML/CSS, Javascript, Perl, Java, C++, Fortran ╟── ◦ └┬─────◍─◩──────────────────────────────────────────────────────────────────────◪─◍ ○ ├──🚀: NASA CFD Codes (OVERFLOW, Loci/CHEM (with multi-phase lagrangian particles) ) ◦ ├──☾: OpenGL / GLSL / Shaders / DirectX / HLSL • ├──⛉: HTML / CSS ● ├──{}: Javascript • ├──🐪: Perl ◦ ├──☕: Java ○ ├──📱: Android (SDK/NDK) / Google Play / Billing Client ◦ ├──🗔: C++ / WinRT / C • ├──F: Fortran ● ├──🖴: Linux Mainframe (HPC/Supercomputing, PBS, Map/Reduce, qsub) • ├──🖳: Linux Workstation (Ubuntu / Redhat) ◦ ├──🗔: Awk ○ ├──$_: (c|tc|ba)sh ◦ ├──🐍: Python • ├──🐘: PHP ● ├──📈: Matlab • ├──{;}: JQuery ◦ ├──ASM: Assembly ○ ├──🗎: SQL ◦ ├──🗗: LabView • ├──⛮: G-Code ● ├──💎: Ruby • └─┬∰: LaTeX ◦ └───◍─◩────────────────────────────────────────────────────────────────────────────────────────────────────◪─◍ ○ ◦ ┌╫─◁ 🌈 Disciplines - CFD, Acoustics, Aerospace, Graphics, Supercomputing, USGov., Procedural Content ╟── • └┬─────◍─◩────────────────────────────────────────────────────────────────────────────────────────────────────◪─◍ ● ├┼─◁ Competent ├── • ├─────◍─◩────────────────────────────────────────────────────────────────────────────────────────────────────◪─◍ ◦ ├─┬🌊: Computational Fluid Dynamics (CFD) ○ │ ├────⚒: Components (Coding, CAD, Setup, Distributed Supercomputer Execution, Visualization) ◦ │ └────🧰: Techniques (Mixed-Phase, Reactive Chemistry, Small to Multi-Mile Scales) • ├─┬🎵: Acoustics ● │ ├────🔊: Fields (Engineering, Non-linear, CAA, High Intensity (launch vehicles), Noise, Architectural) • │ └────🧰: Techniques (Acoustic Photogrammetry, Particle Velocimetry, Laser Vis) ◦ ├─┬🚀: Aerospace (NASA/Space Shuttle/SLS) ○ │ ├────📆: Phases (Planning, Design, Contracting, Assembly, Test, Validation, Ops) ◦ │ ├────✈: Fields (Propulsion / Acoustics / Vibrations / Aerodynamics / Thermal, In-Space) • │ └────🚀: Propulsion: (Chemical, Electrical, Nuclear, Solar, Micro) ● ├──🎲: Graphics Rendering (OpenGL/GLSL/WebGL/DirectX) • ├──🗔: Unix/Linux ◦ ├──🖴: HPC/Supercomputing (including SC11 and SC12 NASA Booth Demos) ○ ├─┬🗑: Big Data / Data Vis (Full STS Launch Pad CFD / Acoustics Simulations) ◦ │ ├────◈: Scale (100 Million Cell, 1,000 million+ particle) • │ └────🚀: Complexity: (Reactive Chemistry, Moving Vehicles) ● ├──🔢: Math, Statistics, and Visualization • ├──◍: Interferometry ◦ ├──🖉: 3D printing (PP/PLA/ABS extrude, StereoLitho, Grain Bed Laser Sinter) ○ ├──Ꮬ: Procedural Content Generation ◦ ├──🗃: Hardware (Selection, Purchase, Assembly, Manufacture, Test, Validate) • ├──🧮: Micro-controllers (Arduino) ● ├──🖇: Control Systems (Linear, Arms, Walking, Ballistics) • ├──Ⓤ: Unreal Engine ◦ ├─────◍─◩────────────────────────────────────────────────────────────────────────────────────────────────────◪─◍ ○ ├┼─◁ Familiar ├── ◦ ├─────◍─◩────────────────────────────────────────────────────────────────────────────────────────────────────◪─◍ • ├──🎥: After Effects / Imagery and Video Post-Processing ● ├──🎲: Probabilistic Learning (Super/unsuper, tiered, NN, distributed N-body analogs) • └─┬🔒: Crypto (One Time, Integer Factor, Discrete Log, Elliptic Curve) ◦ ├────⚔: Attacks (brute force, various plaintexts, side-channel) ○ ├────🩺: Methods (machine power/computation statistics, leaks, metadata, pattern recognition) ◦ └───◍─◩────────────────────────────────────────────────────────────────────────────────────────────────────◪─◍ • ● ┌╫─◁ Tech - Imagery, CFD, Video, Office, CAD/CAM, OS ╟── • └┬─────◍─◩────────────────────────────────────────────────────────────────────────────────────────────────────◪─◍ ◦ ├──👁: Photoshop (5.0-CS5) ○ ├──🚀: Loci/CHEM ◦ ├──🎥: FFMpeg • ├──▦: Office Suite (Word/Excel/PPT) ● ├──📊: MSProject/Sharepoint • ├──📐: Solidworks ◦ ├──📐: Pro/E ○ ├──📐: Autocad ◦ ├──🗔: Ubuntu / Redhat Linux • ├──🪟: Windows ● ├──🎥: Flash (AS 1.0-3.0) • └─┬📈: MATLAB ◦ └───◍─◩────────────────────────────────────────────────────────────────────────────────────────────────────◪─◍ ○ ◦•●•◦○◦•●•◦○◦•●•◦○◦•●•◦○◦•●•◦○◦•●•◦○◦•●•◦○ ● • 💼 Work Experience [02WRK] ◦ ○•●•◦○◦•●•◦○◦•●•◦○◦•● • ● ┌☼─⮘ 💼 Forsako, 10/2020 - Present ⮚── • └┬─────⛯─⚡──────────────────────────────────────────────────────────────────────────────────────────────────⚡─⛯ ◦ ├─┬💻: Developed three Android Apps from concept to production deployment on the Google Play store ○ │ ├────⚒: Coding, deployment, billing, subscriptions, all with advertising videos, and promotional materials. ◦ │ ├───┬🏠: Retro style (Gameboy) tile based rendering engine city builder. • │ │ ├───☕/☾: Java / OpenGL with GPU accelerated user interface. ● │ │ ├───🧰: Pan, zoom, multi-touch map interaction, and million+ citizen simulations. • │ │ ├───💸: Google Play Billing 4.1 integration with InApp and Subscription purchases. ◦ │ │ └───🔗: https://araesmojo-eng.github.io/images/Work/work_forsako_Citimaton_Composite.jpg ○ │ ├───┬📱: Photo editor and accessory visualizer built using Google’s ML Kit technology. ◦ │ │ ├───🧔: Feature recognition, automatic accessory positioning using machine learning. • │ │ ├───🖉: Skin tone editing, makeup editing, effects, and stickers. ● │ │ └───🔗: https://araesmojo-eng.github.io/images/Work/work_forsako_Selfie_Fashion_Composite.jpg • │ └───┬🎵: Metronome, flash, and frequency pulse source generator with continuous flashlight. ◦ │ ├───⏱: Metronomes of sound, light, or vibration. ○ │ ├───🎲: Randomized sources of variable distribution functions. ◦ │ ├───◍: Doppler strobes with adjustable delay and phase amplitude. • │ ├───┇: Morse code pulses in ITU standard with variable speed. ● │ └───🔗: https://araesmojo-eng.github.io/images/Work/work_forsako_FlashMetronome_Composite.jpg • ├─┬🏛: Library of Congress Friends' Choice Civics Video Game Challenge - American Cities. ◦ │ ├────🎲: Combination match-3 game, and society simulation, such as the Civilization series. ○ │ ├───┬▦: 8x15 grid, with 8 block subtypes over a range of city attributes ◦ │ │ └───🌾: Food, Industry, Health, Coins, Culture, Science, Religion, Civics. • │ ├────Ꮬ: Simulate the development of a city using match-3 mechanics to qualify for building purchases. ● │ └────🔗: https://forsako.rf.gd/AmericanCities/LibOfCongressGame.html?i=1 • ├─┬🌄: USDA Proposal, Vertical Farming, partnership with the University of Idaho. ◦ │ ├────🌾: Implement a low-tech, low-cost, vertical system for growing food crops. ○ │ ├────🏛: USDA Urban, Indoor, and Emerging Agricultural Initiative (UIE). ◦ │ ├────📈: Identify and promote horticultural, social, and economic contributions to outdoor vertical farming. • │ └────☑: Applicability to rooftop farms, outdoor vertical production, and green walls. ● ├─┬⭐: Army Proposal - Ground Penetrating Radar, proposal to Army xTechSearch 8. • │ ├────🥾: Shoe based Ground Penetrating Radar that detects buried threats to warfighters. ◦ │ └────💥: Mines, IEDs, and unexploded ordnance. ○ ├─┬🚀: NASA Proposal - Plant Growth in Lunar Regolith. ◦ │ ├────📋: Response to NASA solicitation "E.9 Space Biology Research Studies". • │ ├────▨: Effects exposure to lunar simulant have on plant biology, physiology, growth, and development. ● │ ├────🌾: Five crops (lettuce, cabbage, tomatoes, mizuna, kale). • │ └────🌄: Effects of space-relevant radiation, and altered light spectra. ◦ ├─┬🚀: NASA Proposal - Antenna Balloons. ○ │ └────📋: Response to NASA Innovative Advanced Concepts for cubesat inflatable satellites. ◦ └─┬🚀: NASA Proposal - Cubesat Thrusters. • ├────📋: Response to NASA Innovative Advanced Concepts for cubesats with innovative propulsion. ● └───⛯─⚡──────────────────────────────────────────────────────────────────────────────────────────────────⚡─⛯ • ◦ ┌☼─⮘ 💼 NASA Innovative Advanced Concepts (NIAC), 8/2020 - 10/2021 ⮚── ○ └┬─────⛯─⚡──────────────────────────────────────────────────────────────────────────────────────────────────⚡─⛯ ◦ ├─┬🏛: Created and submitted seven proposals for consideration to NIAC. • │ └────📋: Digital contacts, actuatorless avionics, gas gun cargo transport, and variable frame rate DSP. ● ├──📝: Based on the proposals, selected as concept evaluator for further NIAC phases. • ├─┬📑: Reviewed and evaluated proposals for the NASA Innovative Advanced Concepts (NIAC). ◦ │ └────📋: Determine innovation, credibility, eligibility, feasibility, and value to the government. ○ ├─┬🤝: Participated in working groups to downselect proposals for funding. ◦ │ └────💸: Determine recipients of $175,000 funding grants. • └─┬📋: Wrote full length reviews as primary reviewer for multiple proposals. ● ├────📋: Contributed as secondary author and review panelist to numerous further proposals. • └───⛯─⚡──────────────────────────────────────────────────────────────────────────────────────────────────⚡─⛯ ◦ ○ ┌☼─⮘ 🤝 Project Hope (Nablus Palestine), Sabbatical, 10/2015 - 03/2019 ⮚── ◦ └┬─────⛯─⚡──────────────────────────────────────────────────────────────────────────────────────────────────⚡─⛯ • ├─┬📚: Taught six classes in business, engineering, photography, computer programming, economics, and drawing ● │ ├────📋: Included preparing coursework, lesson plans, daily activities, & learning questions. • │ ├────🌐: Students at Project Hope in Nablus, Palestine to ◦ │ └────🖉: Classes of between 5-20 students ○ ├─┬👐: Volunteered in Palestine, Jordan, and the nearby refugee areas ◦ │ └────⚒: Community outreach, repairs, cleaning, beautifying. • └─┬🕺: Engaged in solo walk across ● ├────🌐: Northern Africa, Europe, the Middle East, India, Nepal, S. America, C. America, and N. America. • └───⛯─⚡──────────────────────────────────────────────────────────────────────────────────────────────────⚡─⛯ ◦ ○ ┌☼─⮘ 💼 All Points Logistics / NASA, 09/2007 - 10/2014 ⮚── ◦ └┬─────⛯─⚡──────────────────────────────────────────────────────────────────────────────────────────────────⚡─⛯ • ├─┬🏢: Program manager for engineering services contract. ● │ ├────: Worth approx. $5 million / year. • │ ├────: Established policy, objectives, labor / budget estimates, and task priorities. ◦ │ ├────: Team of thirty on-site engineers. ○ │ ├────: Support of NASA mission at Marshall Space Flight Center (MFSC). ◦ │ ├────: Negotiated resource allocation, contract goals / objectives, and performance timeframes. • │ └────: Analyzed contract performance, recruited workforce, and developed proposals for future work. ● ├─┬💼: Board seat on larger umbrella contracts. • │ ├────: Engineering and technical services worth approx. $150,000,000 / year. ◦ │ ├────: Engineering, Science and Technical Services [ESTS,NNM05AB50C]. ○ │ ├────: Engineering and Science Services and Skills Augmentation [ESSSA, NNM12AA41C]. ◦ │ ├────: Worked with multi-corporate team to establish yearly, monthly and weekly contract objectives. • │ ├────: Negotiated with teammates for labor, budget, and support efforts. ● │ └────: Directly worked integrated onsite with federal customer at NASA MSFC. • ├─┬🚀: Lead engineer for NASA’s debris analysis team. ◦ │ ├────: Head of the debris working group for the Space Launch System (SLS). ○ │ ├───┬: Guided the technical efforts of 10 immediate representatives. ◦ │ │ ├────: SLS elements (Boosters, Core, Orion, Main Engines, ect...). • │ │ ├────: Linked programs (Ground Systems/KSC, Orion/MPCV). ● │ │ └────: Work of their associated support teams. • │ ├────: Identified, tracked, and mitigated debris risks to the new vehicle (SLS). ◦ │ ├────: Guiding analysis, tests, and redesigns of affected hardware. ○ │ └────: Briefed status and plans to all levels of management including SLS program head and chief engineer. ◦ ├─┬🕵🏻: Principal Investigator for supercomputing and analysis tasks for fluid dynamics & acoustics. • │ ├────: Supported the Space Launch System program for compute resources worth $5 million / year. ● │ ├────: Integrated with users, computing administrators, and NASA customers. • │ ├────: Prioritized investigations, planed usage, administrated resource access, and negotiated conflicts. ◦ │ ├────: Analyzed performance, and developed projections for future allocations & work. ○ │ └────: Coordinated release of results and user participation in relevant conferences to distribute results. ◦ ├─┬💻: Lead developer and liaison to external contractors to improve modeling and simulation capabilities. • │ ├────: Fluid dynamics, debris, and acoustics modeling software for SLS and Space Shuttle support. ● │ ├────: Guided efforts to research new methods of simulation. • │ ├────: Disseminated those methods to scientific community with publications / conferences. ◦ │ └───┬: Incorporated those improved methods into production code. ○ │ └────: Constant use on Space Launch System and Space Shuttle programs for risk on Day of Launch. ◦ ├──📜: Authored eight (8) publications for NASA and journals / conferences related to our work [02PUB]. • ├─┬🎥: Four (4) demos of NASA work and simulations at Supercomputing (SC11 and SC12) ● │ ├────🔗: https://www.nas.nasa.gov/SC11/demos/demo44.html • │ ├────🔗: https://www.nas.nasa.gov/SC12/demos/demo8.html ◦ │ ├────🔗: https://www.nas.nasa.gov/SC12/demos/demo36.html ○ │ ├────🔗: https://www.nas.nasa.gov/SC12/Putnam_Orbit_Backgrounder.html ◦ │ └────🔗: https://araesmojo-eng.github.io/images/NASA/NASA_SC11_ASMAT_Pressure_Contours_Putnam.mp4 • └─┬🧧: Honored eight (8) times with performance awards. ● ├────Two (2) agency level awards for reduction of real risk to the Space Shuttle vehicle. • ├────🔗: https://araesmojo-eng.github.io/images/Awards/Agency_Honor_brochure_2009.pdf ◦ ├────🔗: https://araesmojo-eng.github.io/images/Awards/Agency_Honor_brochure_2008.pdf ○ └───⛯─⚡──────────────────────────────────────────────────────────────────────────────────────────────────⚡─⛯ ◦ • ┌☼─⮘ 💼 Forsako Studio, 08/2006 - 08/2007 ⮚── ● └┬─────⛯─⚡──────────────────────────────────────────────────────────────────────────────────────────────────⚡─⛯ • ├─┬Ꮬ: Founded a small business venture and created a software product. ◦ │ └────: Procedurally generate 3D content for use in digital entertainment and mapping applications. ○ ├──: Researched requirements of potential market, established architecture, planned development effort. ◦ └─┬: Created software to generate procedural landscapes or recreate terrain from known map coordinates in 3D. • └───⛯─⚡──────────────────────────────────────────────────────────────────────────────────────────────────⚡─⛯ ● • ┌☼─⮘ 🏫 Georgia Tech Lorraine, France, 08/2004 - 08/2006 ⮚── ◦ └┬─────⛯─⚡──────────────────────────────────────────────────────────────────────────────────────────────────⚡─⛯ ○ ├─┬∰: Formed analytical models to represent new breeds of electrostatic foam transducers. ◦ │ └────Created from experimental vibration mode and audio data collection. • ├──🔬: Set research goals, planned experiments, and coordinated activities of undergraduate associates. ● └─┬🚚: Coordinated international delivery and purchasing. • ├────Research equipment and supplies for creation of an acoustics research laboratory. ◦ ├────🔗: https://europe.gatech.edu/en ○ └───⛯─⚡──────────────────────────────────────────────────────────────────────────────────────────────────⚡─⛯ ◦ • ┌☼─⮘ 💼 Manning Applied Technologies, 10/1999 - 08/2002 ⮚── ● └┬─────⛯─⚡──────────────────────────────────────────────────────────────────────────────────────────────────⚡─⛯ • ├─┬🤝: Managed teams of up to five to fulfill project goals. ◦ │ └────Fields of electronics, software, production, quality testing, and advertising. ○ ├─┬◍: Led effort which developed successful prototype of high precision bio-agent detection system. ◦ │ └────US military customer utilizing standoff infrared spectrometry and integrated digital signal processing. • └─┬🖇: Created polymer modulation and testing system for use in thermal extremes. ● ├────Incorporated adaptive temperature control, sample modulation, and tensioning. • ├────Collaborated with the Department of Defense, industry customers, and external vendors. ◦ ├────Established product goals, assured final deliverable quality, and generated lead time projections. ○ ├────🔗: https://www.appl-tech.com/ ◦ └───⛯─⚡──────────────────────────────────────────────────────────────────────────────────────────────────⚡─⛯ • ●•◦○◦•●•◦○◦•●•◦○◦•●•◦○◦•●•◦○◦•●•◦○◦•●•◦○ • ◦ 📜 Publications and Conference Demos [02PUB], Publications ○ ◦•●•◦○◦•●•◦○◦•●•◦○◦•● • ● ┌📈─⦖ 2012 ⦕── • │ 📜 Development of modeling capabilities for launch pad acoustics ◦ │ and ignition transient environment prediction ○ └┬─────🗎─∰──────────────────────────────────────────────────────────────────────────────────────────────────∰─🗎 ◦ ├──🕵🏻: J. S. West, L. L. Strutzenberg, G. C. Putnam, P. Liever, and B. Williams. • ├──📚: 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference) ● ├──📖: p. 2094. • ├──📆: June 4th, 2012 ◦ └─┬📜: This paper presents the development effort to establish modeling capabilities for launch vehicle ○ │ liftoff acoustics and ignition transient environment predictions. Peak acoustic loads experienced ◦ │ by the launch vehicle occur during liftoff with strong interaction between the vehicle and the launch • │ facility. Acoustic prediction engineering tools based on empirical models are of limited value in ● │ efforts to proactively design and optimize launch vehicles and launch facility configurations for • │ liftoff acoustics. Modeling approaches are needed that capture the important details of the plume flow ◦ │ environment including the ignition transient, identify the noise generation sources and allow ○ │ assessment of the effects of launch pad geometric details and acoustic mitigation measures such as ◦ │ water injection. This paper will present a status of the CFD tools developed by the Marshall Space • │ Flight Center (MSFC) Fluid Dynamics Branch featuring relevant advanced multi-physics modeling ● │ capabilities and related efforts to establish a hybrid acoustic environment modeling capability • │ combining CFD with a Boundary Element Method (BEM) acoustic field propagation model. ◦ ├────🔗: https://araesmojo-eng.github.io/publications/20120015223_Development_of_Modeling_Capabilities.pdf ○ └───🗎─∰──────────────────────────────────────────────────────────────────────────────────────────────────∰─🗎 ◦ • ┌📈─⦖ 2012 ⦕── ● │ 📜 Numerical modeling of solid rocket motor plumes • └┬─────🗎─∰──────────────────────────────────────────────────────────────────────────────────────────────────∰─🗎 ◦ ├──🕵🏻: M. Mehta, B. Williams, G. C. Putnam, S. D. Smith ○ ├──📚: 2012 Thermal and Fluids Workshop, Pasadena, CA ◦ ├──📖: p. 38 • ├──📆: August 2012 ● └─┬📜: In support of prediction of the launch pad plume deflector environments during solid rocket booster • │ derived NASA STS (Space Shuttle) vehicle ascent, the solid rocket motor plumes have been successfully ◦ │ modeled and analyzed with the Loci-CHEM Navier-Stokes computational fluid dynamics (CFD) code - ○ │ Lagrangian Model at a steady-state approximation. Three main areas have been addressed in this ◦ │ paper: (1) sensitivity study of the Loci-CHEM-Lagrangian model with various other Loci-CHEM • │ modeling approaches; (2) in-depth analysis of the aerophysics associated with solid rocket motor ● │ plumes; (3) comparison studies between the CFD numerical simulations and flight data and an • │ independent engineering code, Reacting and Multi-Phase Program (RAMP2). The reusable solid rocket ◦ │ motor plumes are a multi-phase flow which contains both plume gases and ~16% solid aluminum oxide ○ │ particles by mass. This contribution of solid particles is shown to have a large impact on the ◦ │ aerophysics of the plume gases and the environments of the launch pad plume deflector. The • │ Loci-CHEM–Lagrangian model shows the best overall agreement with plume deflector flight data and ● │ the RAMP2 engineering code. These modeling approaches are being implemented to conduct higher • │ fidelity numerical simulations for the Space Launch System ascent and launch pad environments. ◦ ├────🔗: https://araesmojo-eng.github.io/publications/TFAWS_2012_Aerothermal_Paper_Session_Abstracts.pdf ○ └───🗎─∰──────────────────────────────────────────────────────────────────────────────────────────────────∰─🗎 ◦ • ┌📈─⦖ 2012 ⦕── ● │ 📜 Curved Waveguide Based Nuclear Fission for Small, Lightweight Reactors • └┬─────🗎─∰──────────────────────────────────────────────────────────────────────────────────────────────────∰─🗎 ◦ ├──🕵🏻: R. Coker, G. C. Putnam ○ ├──📚: 19th Advanced Space Propulsion Workshop ◦ ├──📖: no. M12-2257. • ├──📆: November 27th, 2012 ● └─┬📜: The focus of the presented work is on the creation of a system of grazing incidence, supermirror • │ waveguides for the capture and reuse of fission sourced neutrons. Within research reactors, neutron ◦ │ guides are a well known tool for directing neutrons from the confined and hazardous central core to ○ │ a more accessible testing or measurement location. Typical neutron guides have rectangular, hollow ◦ │ cross sections, which are crafted as thin, mirrored waveguides plated with metal (commonly nickel). • │ Under glancing angles with incoming neutrons, these waveguides can achieve nearly lossless transport ● │ of neutrons to distant instruments. Furthermore, recent developments have created supermirror surfaces • │ which can accommodate neutron grazing angles up to four times as steep as nickel. A completed system ◦ │ will form an enclosing ring or spherical resonator system to a coupled neutron source for the purpose ○ │ of capturing and reusing free neutrons to sustain and/or accelerate fission. While grazing incidence ◦ │ mirrors are a known method of directing and safely using neutrons, no method has been disclosed for • │ capture and reuse of neutrons or sustainment of fission using a circular waveguide structure. The ● │ presented work is in the process of fabricating a functional, highly curved, neutron supermirror using • │ known methods of Ni-Ti layering capable of achieving incident reflection angles up to four times ◦ │ steeper than nickel alone. Parallel work is analytically investigating future geometries, mirror ○ │ compositions, and sources for enabling sustained fission with applicability to the propulsion and ◦ │ energy goals of NASA and other agencies. Should research into this concept prove feasible, it would • │ lead to development of a high energy density, low mass power source potentially capable of sustaining ● │ fission with a fraction of the standard critical mass for a given material and a broadening of • │ feasible materials due to reduced rates of release, absorption, and non-fission for neutrons. This ◦ │ advance could be applied to direct propulsion through guided fission products or as a secondary ○ │ energy source for high impulse electric propulsion. It would help meet national needs for highly ◦ │ efficient energy sources with limited dependence on fossil fuels or conflict materials, and it would • │ improve the use of low grade fissile materials which would help reduce national stockpiles and waste. ● ├────🔗: https://araesmojo-eng.github.io/publications/20130001750_Curved_Waveguide.pdf • └───🗎─∰──────────────────────────────────────────────────────────────────────────────────────────────────∰─🗎 ◦ ○ ┌📈─⦖ 2011 ⦕── ◦ │ 📜 Validation and Simulation of ARES I Scale Model Acoustic Test - 1 - Pathfinder Development • └┬─────🗎─∰──────────────────────────────────────────────────────────────────────────────────────────────────∰─🗎 ● ├──🕵🏻: G. C. Putnam • ├──📚: JANNAF 8th Modeling and Simulation Subcommittee Meeting ◦ ├──📖: no. M11-0635. ○ ├──📆: December 5th, 2011 ◦ └─┬📜: The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors • │ meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well ● │ documented set of high fidelity measurements useful for validation including data taken over a range • │ of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of ◦ │ acoustics. To take advantage of this data, a digital representation of the ASMAT test setup has been ○ │ constructed and test firings of the motor have been simulated using the Loci/CHEM computational fluid ◦ │ dynamics software. Within this first of a series of papers, results from ASMAT simulations with the • │ rocket in a held down configuration and without water suppression have then been compared to acoustic ● │ data collected from similar live-fire tests to assess the accuracy of the simulations. Detailed • │ evaluations of the mesh features, mesh length scales relative to acoustic signals, Courant-Friedrichs- ◦ │ Lewy numbers, and spatial residual sources have been performed to support this assessment. Results of ○ │ acoustic comparisons have shown good correlation with the amplitude and temporal shape of pressure ◦ │ features and reasonable spectral accuracy up to approximately 1000 Hz. Major plume and acoustic • │ features have been well captured including the plume shock structure, the igniter pulse transient, ● │ and the ignition overpressure. Finally, acoustic propagation patterns illustrated a previously • │ unconsidered issue of tower placement inline with the high intensity overpressure propagation path. ◦ ├────🔗: https://araesmojo-eng.github.io/publications/20120002894_Validation_And_Simulation_Of_ASMAT.pdf ○ └───🗎─∰──────────────────────────────────────────────────────────────────────────────────────────────────∰─🗎 ◦ • ┌📈─⦖ 2011 ⦕── ● │ 📜 Validation and Simulation of Ares I Scale Model Acoustic Test - 2 - • │ Simulations at 5 Foot Elevation for Evaluation of Launch Mount Effects ◦ └┬─────🗎─∰──────────────────────────────────────────────────────────────────────────────────────────────────∰─🗎 ○ ├──🕵🏻: L. L. Strutzenberg, G. C. Putnam ◦ ├──📚: JANNAF 5th Spacecraft Propulsion Subcommittee Meeting • ├──📖: no. M11-0653. ● ├──📆: December 5th, 2011 • └─┬📜: The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors ◦ │ meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well ○ │ documented set of high fidelity measurements useful for validation including data taken over a range ◦ │ of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of • │ acoustics. Expanding from initial simulations of the ASMAT setup in a held down configuration, ● │ simulations have been performed using the Loci/CHEM computational fluid dynamics software for ASMAT • │ tests of the vehicle at 5 ft. elevation (100 ft. real vehicle elevation) with worst case drift in the ◦ │ direction of the launch tower. These tests have been performed without water suppression and have ○ │ compared the acoustic emissions for launch structures with and without launch mounts. In addition, ◦ │ simulation results have also been compared to acoustic and imagery data collected from similar • │ live-fire tests to assess the accuracy of the simulations. Simulations have shown a marked change in ● │ the pattern of emissions after removal of the launch mount with a reduction in the overall acoustic • │ environment experienced by the vehicle and the formation of highly directed acoustic waves moving ◦ │ across the platform deck. Comparisons of simulation results to live-fire test data showed good ○ │ amplitude and temporal correlation and imagery comparisons over the visible and infrared wavelengths ◦ │ showed qualitative capture of all plume and pressure wave evolution features. • ├────🔗: https://araesmojo-eng.github.io/publications/20120002818_Validation_And_Simulation_Of_ASMAT_2.pdf ● └───🗎─∰──────────────────────────────────────────────────────────────────────────────────────────────────∰─🗎 • ◦ ┌📈─⦖ 2011 ⦕── ○ │ 📜 Validation and Simulation of Ares I Scale Model Acoustic Test - 3 - ◦ │ Modeling and Evaluating the Effect of Rainbird Water Deluge Inclusion • └┬─────🗎─∰──────────────────────────────────────────────────────────────────────────────────────────────────∰─🗎 ● ├──🕵🏻: L. L. Strutzenberg, G. C. Putnam • ├──📚: JANNAF 8th Modeling and Simulation Subcommittee Meeting ◦ ├──📖: no. M11-0657. ○ ├──📆: December 5th, 2011 ◦ └─┬📜: The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors • │ meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well ● │ documented set of high fidelity measurements useful for validation including data taken over a range • │ of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of ◦ │ acoustics. Building on dry simulations of the ASMAT tests with the vehicle at 5 ft. elevation ○ │ (100 ft. real vehicle elevation), wet simulations of the ASMAT test setup have been performed using ◦ │ the Loci/CHEM computational fluid dynamics software to explore the effect of rainbird water suppression • │ inclusion on the launch platform deck. Two-phase water simulation has been performed using an energy ● │ and mass coupled lagrangian particle system module where liquid phase emissions are segregated into • │ clouds of virtual particles and gas phase mass transfer is accomplished through simple Weber number ◦ │ controlled breakup and boiling models. Comparisons have been performed to the dry 5 ft. elevation ○ │ cases, using configurations with and without launch mounts. These cases have been used to explore the ◦ │ interaction between rainbird spray patterns and launch mount geometry and evaluate the acoustic sound • │ pressure level knockdown achieved through above-deck rainbird deluge inclusion. This comparison has ● │ been anchored with validation from live-fire test data which showed a reduction in rainbird • │ effectiveness with the presence of a launch mount. ◦ ├────🔗: https://araesmojo-eng.github.io/publications/20120002822_Validation_And_Simulation_Of_ASMAT_3.pdf ○ └───🗎─∰──────────────────────────────────────────────────────────────────────────────────────────────────∰─🗎 ◦ • ┌📈─⦖ 2011 ⦕── ● │ 📜 Simulation of Ares Scale Model Acoustic Test Overpressure Transients Using Computational Fluid Dynamics • └┬─────🗎─∰──────────────────────────────────────────────────────────────────────────────────────────────────∰─🗎 ◦ ├──🕵🏻: G. C. Putnam ○ ├──📚: 162nd Acoustical Society of America (ASA) Meeting, San Diego, CA ◦ ├──📖: Paper M11, Volume 1226 • ├──📆: November 3rd, 2011 ● └─┬📜: Outline • │ Introduction ◦ │ – Overview of the Ares Scale Model Acoustic Test (ASMAT) ○ │ – Simulation goal and procedure ◦ │ Case Progression • │ – Initial Attempt at Elevation 0’ (Pathfinder) ● │ – Ignition Transient and Throat Plug Release • │ – Model Refinement ◦ │ Conclusions / Future Work ○ ├────🔗: https://araesmojo-eng.github.io/publications/20120001764_Simulation_of_ASMAT_Overpressure.pdf ◦ └───🗎─∰──────────────────────────────────────────────────────────────────────────────────────────────────∰─🗎 • ● ┌📈─⦖ 2011 ⦕── • │ 📜 To Profit or Not: Economic Considerations of Long Term Organizations ◦ └┬─────🗎─∰──────────────────────────────────────────────────────────────────────────────────────────────────∰─🗎 ○ ├──🕵🏻: G. C. Putnam ◦ ├──📚: Defense Advanced Research Projects Agency: 100 Year Starship Symposium • ├──📖: Education, Society, Legal and Economic Panel, 2:45 ● ├──📆: October 1st, 2011 • └─┬📜: ESELC Summary: Education as a mission, Who goes, who stays, To profit or not, Economies in space, ◦ │ Communications back to Earth, Political ramifications, Round-trip legacy investments, Assets left behind ○ ├────🔗: https://araesmojo-eng.github.io/publications/100YSSAgenda_0902__Putnam_Publication_pg6.pdf ◦ └───🗎─∰──────────────────────────────────────────────────────────────────────────────────────────────────∰─🗎 • ● ┌📈─⦖ 2011 ⦕── • │ 📜 Simulation of acoustics for Ares I scale model acoustic tests ◦ └┬─────🗎─∰──────────────────────────────────────────────────────────────────────────────────────────────────∰─🗎 ○ ├──🕵🏻: G. C. Putnam, L. L. Strutzenburg ◦ ├──📚: The Journal of the Acoustical Society of America • ├──📖: Volume 130, Issue 4, p. 2543-2543 ● ├──📆: October, 2011 • └─┬📜: The Ares I scale model acoustics test (ASMAT) is a series of live-fire tests of scaled rocket motors ◦ │ meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well ○ │ documented set of high fidelity acoustic measurements useful for validation including data taken over ◦ │ a range of test conditions and containing phenomena like ignition over-pressure and water suppression • │ of acoustics. To take advantage of this data, a digital representation of the ASMAT test setup has ● │ been constructed and test firings of the motor have been simulated using the Loci/CHEM computational • │ fluid dynamics software. Results from ASMAT simulations with the rocket in both held down and elevated ◦ │ configurations, as well as with and without water suppression have been compared to acoustic data ○ │ collected from similar live-fire tests. Results of acoustic comparisons have shown good correlation ◦ │ with the amplitude and temporal shape of pressure features and reasonable spectral accuracy up to • │ approximately 1000 Hz. Major plume and acoustic features have been well captured including the plume ● │ shock structure, the igniter pulse transient, and the ignition overpressure. • ├────🔗: https://araesmojo-eng.github.io/publications/10565829_Simulation_ASMAT_Acoustics_Abstract.pdf ◦ └───🗎─∰──────────────────────────────────────────────────────────────────────────────────────────────────∰─🗎 ○ ◦ ┌📈─⦖ 2010 ⦕── • │ 📜 Ultrasonic particle size fractionation in a moving air stream ● └┬─────🗎─∰──────────────────────────────────────────────────────────────────────────────────────────────────∰─🗎 • ├──🕵🏻: R. S. Budwig, M. J. Anderson, G. C. Putnam, C. Manning ◦ ├──📚: Ultrasonics ○ ├──📖: Volume 50, Issue 1, p. 26-31 ◦ ├──📆: January 1st, 2010 • └─┬📜: Identification of bio-aerosol particles may be enhanced by size sorting before applying analytical ● │ techniques. In this paper, the use of ultrasonic acoustic radiation pressure to continuously size • │ fractionate particles in a moving air stream is described. Separate particle-laden and clean air ◦ │ streams are introduced into a channel and merged under laminar flow conditions. An ultrasonic ○ │ transducer, mounted flush to one wall of the channel, excites a standing ultrasonic wave ◦ │ perpendicular to the flow of the combined air stream. Acoustic radiation forces on the particles • │ cause them to move transverse to the flow direction. Since the radiation force is dependent upon ● │ the particle size, larger particles move a greater transverse distance as they pass through the • │ standing wave. The outlet flow is then separated into streams, each containing a range of particle ◦ │ sizes. Experiments were performed with air streams containing glass microspheres with a size ○ │ distribution from 2–22 μm, using a centerline air stream velocity of approximately 20 cm/s. An ◦ │ electrostatic transducer operating at a nominal frequency of 50 kHz was used to drive an ultrasonic • │ standing wave of 150 dB in pressure amplitude. The microsphere size distributions measured at the ● │ outlet were compared with the predictions of a theoretical model. Experiments and theory show • │ reasonable correspondence. The theoretical model also indicates an optimal partitioning of the ◦ │ particle-laden and clean air inlet streams. ○ ├────🔗: https://www.sciencedirect.com/science/article/abs/pii/S0041624X09000791?via%3Dihub ◦ └───🗎─∰──────────────────────────────────────────────────────────────────────────────────────────────────∰─🗎 • ● ┌📈─⦖ 2005 ⦕── • │ 📜 Use of a curved reflector to amplify ultrasonic standing waves in an air-filled channel ◦ └┬─────🗎─∰──────────────────────────────────────────────────────────────────────────────────────────────────∰─🗎 ○ ├──🕵🏻: M. J. Anderson, A. C. Cluff, E. C. Lemmon, G. C. Putnam ◦ ├──📚: The Journal of the Acoustical Society of America • ├──📖: Volume 117, Issue 3, p. 1122-1128 ● ├──📆: March, 2005 • └─┬📜: The application of a slightly curved reflector to increase the amplitude of an ultrasonic standing ◦ │ wave in a semi-infinite rectangular channel was explored. Air was assumed to be the acoustic medium ○ │ in the channel. Excitation of the standing wave was assumed to be provided by a square transducer ◦ │ flush-mounted to one wall of the channel. A slight curvature was placed in the reflecting wall of • │ the channel. A finite element analysis was used to predict the amplitude of the standing wave that ● │ would be excited in the channel. A perfectly matched layer was used to model the semi-infinite • │ channel geometry. At frequencies near 50 kHz, for source ranging from 6.6 to 26.6, and channel ◦ │ depths necessary to excite standing waves at one-half and one wavelength resonance, the computations ○ │ predicted that an increase in acoustic pressure amplitude from 2 to 11 dB could be achieved with a ◦ │ reflector whose depth of curvature was 16% of the channel depth. Much of this increase could be • │ obtained with curvatures of smaller depth. Experiments with a channel and reflector of representative ● │ geometry gave a measured increase in acoustic pressure amplitude of 4.86 dB. • ├────🔗: https://pubs.aip.org/asa/jasa/article-pdf/117/3/1122/12249900/1122_1_online.pdf ◦ └───🗎─∰──────────────────────────────────────────────────────────────────────────────────────────────────∰─🗎 ○ ◦ ┌📈─⦖ 2004 ⦕── • │ 📜 Use of a slightly curved reflector to enhance an airborne ultrasonic standing wave ● │ in a semi‐infinite rectangular channel • └┬─────🗎─∰──────────────────────────────────────────────────────────────────────────────────────────────────∰─🗎 ◦ ├──🕵🏻: M. J. Anderson, A. C. Cluff, E. C. Lemmon, G. C. Putnam ○ ├──📚: The Journal of the Acoustical Society of America ◦ ├──📖: Volume 116, Issue 4, p. 2598-2598 • ├──📆: October, 2004 ● └─┬📜: One way to separate small particles from a moving air stream is to pass the stream through an intense • │ ultrasonic standing wave. If the standing wave propagates perpendicular to the fluid flow direction, ◦ │ acoustic radiation pressure will move the particles to specific locations in the stream, where they ○ │ can be collected at the stream outlet. Of primary importance is to achieve very high pressure ◦ │ amplitude in the standing wave, in spite of the presence of openings for fluid flow. In this • │ presentation, the use of a slightly curved reflector within a flow channel to increase the amplitude ● │ of an ultrasonic standing wave is discussed. A finite element analysis was used to predict the • │ amplitude of the standing wave that would be excited in a semi‐infinite channel. A perfectly matched ◦ │ layer was used to account for the semi‐infinite geometry. The finite element analysis showed that a ○ │ significant gain in amplification within the channel could be achieved with a surprisingly small ◦ │ amount of reflector curvature. Experiments show that much of this gain can be obtained in practice. • ├────🔗: https://pubs.aip.org/asa/jasa/article/116/4_Supplement/2598/543498 ● └───🗎─∰──────────────────────────────────────────────────────────────────────────────────────────────────∰─🗎 • ◦ ┌📈─⦖ 2004 ⦕── ○ │ 📜 An Optimization Study for the Separation of Particles in Air Using Acoustic Resonance [02PUBTHS] ◦ └┬─────🗎─∰──────────────────────────────────────────────────────────────────────────────────────────────────∰─🗎 • ├──🕵🏻: G. C. Putnam ● ├──📚: University of Idaho • ├──📖: Master's Thesis ◦ ├──📆: June, 2004 ○ └─┬📜: Acoustic amplification within a partially enclosed cavity has a number of uses in applications where ◦ │ mass must enter and leave the cavity. This work describes an optimization process, which was used • │ to maximize the performance of such a cavity for use in separation of airborne particulates. The ● │ acoustic source of the cavity, the shape of the reflector used within the cavity, and the paths of • │ particles flowing through the cavity were all investigated. It was found that for frequencies in the ◦ │ vicinity of 50 kHz, electrostatic transducers can be designed which provide significant gains in ○ │ acoustic resonant pressure and quality factor over conventional Polaroid and piezoelectric ◦ │ technologies. It was also noted that for curved reflector technologies, the presence of a curved • │ reflector did improve both pressure and quality factors. However, the achievable experimental gains ● │ were significantly less than those predicted through theoretical models. Finally, it was found that • │ when implemented within a model resonator, the presence of a curved reflector induced little unwanted ◦ │ particle motion within the flow and significantly improved separation performance. ○ ├────🔗: https://www.researchgate.net/publication/3471691 ◦ └───🗎─∰──────────────────────────────────────────────────────────────────────────────────────────────────∰─🗎 • ● ┌📈─⦖ 2003 ⦕── • │ 📜 The physics and technology of ultrasonic particle separation in air ◦ └┬─────🗎─∰──────────────────────────────────────────────────────────────────────────────────────────────────∰─🗎 ○ ├──🕵🏻: M. J. Anderson, R. S. Budwig, A. C. Cluff, E. C. Lemmon, G. C. Putnam ◦ ├──📚: Proceedings of the 2003 World Congress on Ultrasonics, Paris • ├──📖: p. 1615-1621 ● ├──📆: September 7th-10th, 2003 • └─┬📜: A potential application of ultrasound is the separation of small particles from a moving airborne ◦ │ aerosol. Previous studies have shown that it is feasible to extract small particles from a moving ○ │ stream of water. The thermodynamic and transport properties of the suspension fluid control the ◦ │ mechanisms available for separation, the forces that can be exerted, and the practical dimensions • │ of ultrasonic airborne particle separators. Fundamental models exist that allow comparison of ● │ electrostatic and piezoelectric transduction in general for ultrasonic particle separation. Finite • │ element studies show that allowance for slight curvatures in flow channel geometry can increase ◦ │ achievable acoustic pressures. We describe analyses and experiments that consider these factors for ○ │ ultrasonic particle separation in air. The potential performance of ultrasonic separation in air is ◦ │ then compared to competing inertial technologies. • ├────🔗: https://araesmojo-eng.github.io/publications/000229_Physics_And_Technology_Of_Ultrasonic.pdf ● └───🗎─∰──────────────────────────────────────────────────────────────────────────────────────────────────∰─🗎 • ◦○◦•●•◦○◦•●•◦○◦•●•◦○ ○ ◦ 📜 Publications and Conference Demos [02PUB], Conference Demos • ●•◦○◦•●•◦○◦•●•◦○◦•● • ◦ ┌📈─⦖ 2012 ⦕── ○ │ 🎪 SC12, Reaching Beyond Low Earth Orbit ◦ └┬─────🗎─∰──────────────────────────────────────────────────────────────────────────────────────────────────∰─🗎 • ├──🕵🏻: G. C. Putnam, B. Williams, P. Davis ● ├──📚: Supercomputing 12, Salt Lake City, Utah ( https://sc12.supercomputing.org/ ) • ├──📖: NASA@SC12 Booth ◦ ├──📆: November 10th-16th, 2012 ○ └─┬📜: Using thousands of processors on the Pleiades supercomputer at the NASA Advanced Supercomputing ◦ │ Division (NAS) at Ames Research Center, Moffett Field, Calif., the MSFC Fluid Dynamics team ran more • │ than 40 CFD simulations, each spanning several weeks and requiring multiple terabytes of storage to ● │ process hundreds of individual gigabyte-scale files for visualization, post-processing, and data • │ analysis. These simulations capture the sources of the acoustic waves and follow the action to track ◦ │ their effects throughout the launch environment. Validated results are provided to SLS engineers so ○ │ they can optimize the design of the vehicle and launch components. ◦ ├────🔗: https://araesmojo-eng.github.io/images/NASA/NASA_SC_12_Reaching_Beyond_LEO.pdf • ├────🔗: https://www.nas.nasa.gov/SC12/Putnam_Orbit_Backgrounder.html ● └───🗎─∰──────────────────────────────────────────────────────────────────────────────────────────────────∰─🗎 • ◦ ┌📈─⦖ 2012 ⦕── ○ │ 🎪 SC12, Simulating Rocket Ignition and Launch Environments for NASA's Space Launch System ◦ └┬─────🗎─∰──────────────────────────────────────────────────────────────────────────────────────────────────∰─🗎 • ├──🕵🏻: G. C. Putnam ● ├──📚: Supercomputing 12, Salt Lake City, Utah ( https://sc12.supercomputing.org/ ) • ├──📖: NASA@SC12 Booth ◦ ├──📆: November 10th-16th, 2012 ○ └─┬📜: During liftoff, the Space Launch System's (SLS) solid rocket boosters (SRBs) send large amplitude ◦ │ pressure waves into the confined space of the launch structure. These ignition overpressure (IOP) • │ waves, which radiate throughout the launch environment, can cause damage to the launch structure, ● │ the vehicle, and the payload, and must be well understood during the design process. Rocket plume gas • │ and evaporating suppression water interact as the ignition overpressure (IOP) wave propagates through ◦ │ the launch tower. The validation provided confidence that CFD methods could accurately predict ○ │ phenomena such as IOP in the full-scale SLS launch environment. The full-scale analysis was decoupled ◦ │ into component problems that could be simulated and validated independently, then used to inform • │ simulations of the full-scale integrated vehicle. The first component problem examined the propagation ● │ of acoustic waves through the launch environment. The simulations tracked the propagation of acoustic • │ waves in both dry launch pad conditions and in conditions with water-based sound suppression systems ◦ │ activated. The second component performed time-accurate, fully 3D simulations of the SRB ignition ○ │ transient and was used to create a time-dependent profile the rocket internal dynamics as an input to ◦ │ further simulations for SLS launch-induced environments. Finally, using the results of the sub-scale • │ and SRB simulations, full-scale simulations were performed of the SLS launch environment with the ● │ goal of resolving tool uncertainties that could not account for differences from the Shuttle to • │ SLS configuration. ◦ ├────🔗: https://araesmojo-eng.github.io/images/NASA/NASA_SC_12_Simulating_SLS_Launch_Environments.pdf ○ ├────🔗: https://www.nas.nasa.gov/SC12/demos/demo36.html ◦ └───🗎─∰──────────────────────────────────────────────────────────────────────────────────────────────────∰─🗎 • ● ┌📈─⦖ 2012 ⦕── • │ 🎪 SC12, Validating Water Spray Simulation Models for the SLS Launch Environment ◦ └┬─────🗎─∰──────────────────────────────────────────────────────────────────────────────────────────────────∰─🗎 ○ ├──🕵🏻: G. C. Putnam ◦ ├──📚: Supercomputing 12, Salt Lake City, Utah ( https://sc12.supercomputing.org/ ) • ├──📖: NASA@SC12 Booth ● ├──📆: November 10th-16th, 2012 • └─┬📜: Validations against recent NASA test data have shown that modern Computational Fluid Dynamics (CFD) ◦ │ codes can make meaningful pressure predictions over the full launch pad for frequencies up to 150 Hz, ○ │ high enough that significant phenomena such as the transient startup and overpressure pulse of rockets ◦ │ can be modeled. These validations have provided confidence in the results of CFD simulations, allowing • │ them to make immediate impacts on the design of NASA's new Space Launch System (SLS). Modifications ● │ to the mobile launcher, flame deflector, vehicle base, and liftoff design have all been influenced • │ by this work. However, simulations have been limited in their validation and use to dry launch pads. ◦ │ To examine the full range of designs, multi-phase capability has been developed in partnership with ○ │ Mississippi State University and used to simulate the effects of water suppression for a wet launch ◦ │ pad validation case. Emission, flight, and evaporation of water spray systems have been simulated on • │ an active launch pad by using a two-phase approach that includes Lagrangian water particles and gas ● │ phase CFD elements. The simulation was based on a test case from the Ares I Scale Model Acoustic Test • │ so that pressure predictions from across the launch pad could be validated against real data. ◦ │ Approximately 200 million grid cells were used to capture the fine detail and geometry of the pad, ○ │ and millions of particles were tracked to capture the dynamics of a water cascade. This work was ◦ │ performed using a density-based, finite-volume CFD code called Loci/CHEM. • ├────🔗: https://araesmojo-eng.github.io/images/NASA/NASA_SC_12_Validating_Water_Spray_Models_for_SLS.pdf ● ├────🔗: https://www.nas.nasa.gov/SC12/demos/demo8.html • ├────🔗: https://araesmojo-eng.github.io/images/NASA/NASA_SC12_ASMAT_Water_Suppression_Putnam.mp4 ◦ └───🗎─∰──────────────────────────────────────────────────────────────────────────────────────────────────∰─🗎 ○ ◦ ┌📈─⦖ 2011 ⦕── • │ 🎪 SC11, Simulating the Ares I Scale Model Acoustic Test Using CFD ● └┬─────🗎─∰──────────────────────────────────────────────────────────────────────────────────────────────────∰─🗎 • ├──🕵🏻: G. C. Putnam ◦ ├──📚: Supercomputing 11, Seattle, Washington ( https://sc11.supercomputing.org/ ) ○ ├──📖: NASA@SC11 Booth ◦ ├──📆: November 12th-18th, 2011 • └─┬📜: NASA regularly uses computational fluid dynamics (CFD) simulations to assess the loads and risks for ● │ space vehicles at liftoff. To have confidence in the results from these simulations, however, their • │ accuracy must be anchored to real-world measurements. Recently, such validations have been performed ◦ │ using data from Ares I scaled rocket tests at Marshall Space Flight Center. The Ares I Scale Model ○ │ Acoustics Test (ASMAT) was a series of live-fire tests of a scaled rocket motor intended to simulate ◦ │ the acoustic conditions of the full Ares I vehicle at launch. The test's primary goals were to • │ validate the acoustic environment and loads of the vehicle. Simulations of the ASMAT motor firings ● │ were performed before live-fire tests to predict the rocket performance and the startup environment • │ at liftoff. Results from the simulations have been compared to a range of pressure measurements from ◦ │ the physical test setup, as well as to visible and infrared imagery of the tests, and have shown ○ │ excellent correlation to real-world results. These initial findings have helped provide the ◦ │ confidence to move forward with full-scale simulations of liftoff environments for future launch • │ vehicles, such as the Space Launch System. ● ├────🔗: https://araesmojo-eng.github.io/images/NASA/NASA_SC_11_ASMAT_Acoustics.pdf • ├────🔗: https://www.nas.nasa.gov/SC11/demos/demo44.html ◦ ├────🔗: https://araesmojo-eng.github.io/images/NASA/NASA_SC11_ASMAT_Pressure_Contours_Putnam.mp4 ○ └───🗎─∰──────────────────────────────────────────────────────────────────────────────────────────────────∰─🗎 ◦ •●•◦○◦•●•◦○◦•●•◦○◦•●•◦○◦•●•◦○◦•●•◦○◦•● ● • 🎓 Education [02EDU] ◦ ○•●•◦○◦•●•◦○◦•●•◦○◦•● ◦ • ┌🏫─⸎ 🎓 Masters, 2004 ⸎── ● └┬─────📚─📓──────────────────────────────────────────────────────────────────────────────────────────────────📓─📚 • ├──🕵🏻: G. C. Putnam ◦ ├──🎓: Master's Degree with Thesis - Thesis [02PUBTHS] ○ ├──📚: University of Idaho ◦ ├──🖃: Mechanical Engineering / Spec. Acoustics and Fluid Dynamics • ├──🏫: Moscow, ID, USA ● ├──📆: May 2004 • └─┬🥇: GPA 3.84 / 4.0 ◦ └───📚─📓──────────────────────────────────────────────────────────────────────────────────────────────────📓─📚 ○ ◦ ┌🏫─⸎ 🎓 Bachelors, 2001 ⸎── • └┬─────📚─📓──────────────────────────────────────────────────────────────────────────────────────────────────📓─📚 ● ├──🕵🏻: G. C. Putnam • ├──🎓: Bachelor's Degree ◦ ├──📚: University of Idaho ○ ├──🖃: Mechanical Engineering ◦ ├──🏫: Moscow, ID, USA • ├──📆: December 2001 ● └─┬🥇: GPA 3.56 / 4.0 • └───📚─📓──────────────────────────────────────────────────────────────────────────────────────────────────📓─📚 ◦ ○◦•●•◦○◦•●•◦○◦•●•◦○◦•●•◦○◦•●•◦○◦•●•◦○ ◦ • 🏆 Professional Awards [02PRAWD] ● •◦○◦•●•◦○◦•●•◦○◦•●•◦○ ◦ ○ ┌◈─⮘ 🧧 Agency Award, NASA, 2009 ⮚── ◦ │ "Exemplary improvements to Liftoff Debris task" • └┬─────🔆─📝─────────────────────────────────────────────────────────────────────────────────────────────────📝─🔆 ● ├──🕵🏻: L. L. Strutzenburg, G. C. Putnam • ├──📚: NASA ◦ ├──📆: 2009 ○ ├──🔗: https://araesmojo-eng.github.io/images/Awards/Agency_Honor_brochure_2009.pdf ◦ └─────🔆─📝─────────────────────────────────────────────────────────────────────────────────────────────────📝─🔆 • ● ┌◈─⮘ 🧧 Agency Award, NASA, 2008 ⮚── • │ "Exceptional analysis of Shuttle Flame Trench debris risk" ◦ └┬─────🔆─📝─────────────────────────────────────────────────────────────────────────────────────────────────📝─🔆 ○ ├──🕵🏻: L. L. Strutzenburg, J. S. West, G. C. Putnam ◦ ├──📚: NASA • ├──📆: 2008 ● ├──🔗: https://araesmojo-eng.github.io/images/Awards/Agency_Honor_brochure_2008.pdf • ├──🔗: https://araesmojo-eng.github.io/images/Flame_Trench/STS124_infrared_bricks.gif ◦ └─────🔆─📝─────────────────────────────────────────────────────────────────────────────────────────────────📝─🔆 ○ ◦ ┌◈─⮘ 🏆 Edwin F. Connors Contract Award, Jacobs, ESTS ⮚── • │ "Exceptional improvements to Engineering, Science and Technical Services (ESTS) contract performance" ● └┬─────🔆─📝─────────────────────────────────────────────────────────────────────────────────────────────────📝─🔆 • ├──🕵🏻: G. C. Putnam ◦ ├──📚: Jacobs ○ ├──📝: NASA MSFC Engineering, Science and Technical Services (ESTS)[NNM05AB50C] ◦ └─────🔆─📝─────────────────────────────────────────────────────────────────────────────────────────────────📝─🔆 • ● ┌◈─⮘ 🏆🏆🏆 (3) Outstanding Task Awards, Jacobs, ESTS ⮚── • │ "Liftoff Analysis and Launch Vehicle Simulation Tasks" ◦ │ for Engineering, Science and Technical Services (ESTS) contract ○ │ in support of NASA Fluid Dynamics Branch (ER42) ◦ └┬─────🔆─📝─────────────────────────────────────────────────────────────────────────────────────────────────📝─🔆 • ├──🕵🏻: G. C. Putnam and task team members ● ├──📚: Jacobs • ├──📝: NASA MSFC Engineering, Science and Technical Services (ESTS)[NNM05AB50C] ◦ └─────🔆─📝─────────────────────────────────────────────────────────────────────────────────────────────────📝─🔆 ○ ◦ ┌◈─⮘ 🏆🏆🏆 (3) Continuous Improvement Contract Awards, Jacobs, ESTS ⮚── • │ "Process improvements with significant monetary customer savings" ● │ for Engineering, Science and Technical Services (ESTS) contract • │ in support of NASA Fluid Dynamics Branch (ER42) ◦ └┬─────🔆─📝─────────────────────────────────────────────────────────────────────────────────────────────────📝─🔆 ○ ├──🕵🏻: G. C. Putnam ◦ ├──📚: Jacobs • ├──📝: NASA MSFC Engineering, Science and Technical Services (ESTS)[NNM05AB50C] ● └─────🔆─📝─────────────────────────────────────────────────────────────────────────────────────────────────📝─🔆 • ◦○◦•●•◦○◦•●•◦○◦•●•◦○◦•●•◦○◦•●•◦○◦•●•◦○ ○ ◦ 🥇 Academic Awards [02ACAWD] • ●•◦○◦•●•◦○◦•●•◦○◦•●•◦○ • ◦ ┌🞕─⸎ 🥇 National and University of Idaho Dean’s Lists, 1997 - 2001 ⸎── ○ └┬─────🞼─◧──────────────────────────────────────────────────────────────────────────────────────────────────◨─🞼 ◦ ├──🕵🏻: G. C. Putnam • ├──📚: University of Idaho ● ├──🖃: Mechanical Engineering • └─────🞼─◧──────────────────────────────────────────────────────────────────────────────────────────────────◨─🞼 ◦ ○ ┌🞕─⸎ 🥇 Phi Eta Sigma Honor Society, 1997 - 2001 ⸎── ◦ └┬─────🞼─◧──────────────────────────────────────────────────────────────────────────────────────────────────◨─🞼 • ├──🕵🏻: G. C. Putnam ● ├──📚: Phi Eta Sigma Honor Society • ├──🖃: University of Idaho Chapter ◦ ├──🔗: https://www.phietasigma.org/ ○ └─────🞼─◧──────────────────────────────────────────────────────────────────────────────────────────────────◨─🞼 ◦ • ┌🞕─⸎ 🥇 Golden Key Honor Society, 1997 - 2001 ⸎── ● └┬─────🞼─◧──────────────────────────────────────────────────────────────────────────────────────────────────◨─🞼 • ├──🕵🏻: G. C. Putnam ◦ ├──📚: Golden Key Honor Society ○ ├──🖃: University of Idaho Chapter ◦ ├──🔗: https://www.goldenkey.org/ • └─────🞼─◧──────────────────────────────────────────────────────────────────────────────────────────────────◨─🞼 ● • ┌🞕─⸎ 📝 Grade Qualified Full Honors Tuition Coverage, 1997 - 2001 ⸎── ◦ └┬─────🞼─◧──────────────────────────────────────────────────────────────────────────────────────────────────◨─🞼 ○ ├──🕵🏻: G. C. Putnam ◦ ├──📚: University of Idaho • ├──🖃: Mechanical Engineering ● └─────🞼─◧──────────────────────────────────────────────────────────────────────────────────────────────────◨─🞼 • ◦ ┌🞕─⸎ 🥇 Undergraduate Honors Certificate and Cum Laude Graduation, 1997 - 2001 ⸎── ○ └┬─────🞼─◧──────────────────────────────────────────────────────────────────────────────────────────────────◨─🞼 ◦ ├──🕵🏻: G. C. Putnam • ├──📚: University of Idaho ● ├──🖃: Mechanical Engineering • ├──🔗: https://www.uidaho.edu/campus-communities/honors ◦ └─────🞼─◧──────────────────────────────────────────────────────────────────────────────────────────────────◨─🞼 ○ ◦•●•◦○◦•●•◦○◦•●•◦○◦•●•◦○◦•●•◦○◦•●•◦○◦•● • ● 💬 Languages [02LNG] • ◦○◦•●•◦○◦•●•◦○◦•●•◦○◦•● ○ ◦ ┌🗣─⸨ 💬 English, Native ⸩── • └──────本─ç──────────────────────────────────────────────────────────────────────────────────────────────────ç─本 ● • ┌🗣─⸨ 💬 French / Français, Intermediate ⸩── ◦ └──────本─ç──────────────────────────────────────────────────────────────────────────────────────────────────ç─本 ○ ◦ ┌🗣─⸨ 💬 Japanese / Nihongo / 日本語, Novice ⸩── • └──────本─ç──────────────────────────────────────────────────────────────────────────────────────────────────ç─本 ● • ┌🗣─⸨ 💬 Arabic / al-ʿarabiyyatu l-fuṣḥā / اَلعَرَبِيَّةُ ٱلْفُصْحَىٰ, Novice ⸩── ◦ └──────本─ç──────────────────────────────────────────────────────────────────────────────────────────────────ç─本 ○ ◦•●•◦○◦•●•◦○◦•●•◦○◦•●•◦○◦•●•◦○◦•●•◦○◦•●•◦○◦•●•◦○◦•●•◦○◦•●•◦○◦•●•◦○◦•●•◦○◦•●•◦○◦•●•◦○◦•●•◦○◦•●•◦○◦•●•◦○◦•●•◦○◦•●•◦○ . . :.. :.:...$X:;. . .:..X;+;:;;;;. . . :x+;;;x;x;$;x+X::: ..... X;X:++:;;+;;;;;:+x+:; .xx .... .+.;;x:++;:;+X;+;x;;;::: .; :.:...+;+:+xX;+;+x+:...+x$:+: .. .:..;x:::.X;x++X;:X$XX+:Xxx;x . ..;;;X:;++;;:XX.::X;x ;Xx. . .; :.+.;$X::$+;;$; .$+ . : .:+;+:. ;$ x;+xX$. .xX.;+;.:x$:X+++x$ .......X:+::X+.X$$;Xx++x$ ;:; :.;:.$XX+:;;:;x+ ....... ..X;;.;.x:$: &;$+x;+;X :. ........... .:;;;: ..:::X.x XX. : x$ .:: .:::.... . ;:.: :$.::..;;::;:.;: .;;;: ..::.:....... .; ;. x.x. X$xX:xX+:. . ;; ..::::...... : .:: ..+;$xX:x+++; ;;;;;;..:::::.... : :::X;+$:x:.++:++; ::++;...:::::... ...:. ; :: +. x:;:x$ ;;;;;;..:::... . ::::.. ... ::::x:::++++ ;+++;:.::::::.: .:: . x.: .. +.:;.. ;++++;.:::::::: ;..:;;:;:: .. :.. .;;: +++++;.::;:::::;;;:;;;:: ; . .. .:: .+++++;::;;;:::.++xx+++++;;; : :; :+x+++;::;;;;::.;xxxx+++++;; . . :: ;+xx++;:;;;;;;;.xxxxxx+++;+; . ....... ::.: ;+xxx++:;;;;;::.xxxxxx++++;; .::+;+;::;xX+ +xxxx++:;;;;;;. xxxxxxx+++;; .... ..;;:+;x. : xxxxx++:;;;;;;. xxXXxx+++++; . .;:.;x;;:xXx+x+; xxxxx++:;+;+;;..+xxXxxx++++; ..:..;;::.+xXXXx+ : xxxxxx+;;++++...+xXXxxxx+++; .. .++;+::+;x+xx+; . .:+; xXxXxx+;+++++...;XxXxxxx+++; . . . .:::;XXX++x++xx::::;;; .XXXXXxx;+++++...:XXXXxxxx++; ...::.::;xX+;:+;;;;;;;;++; ++:: .XXXXXxx;++++;::::xXXXxxxx+++ . ..:......;x;;x;X;+;;+xxxXXx::++xx..xXXXXXx+++++;::::XXXXXxxx+++ . :.......;.:;::x+++++XXXX$Xxxxxxx+:XXXXXXx++xx;;::::;XXXXxxx+++. :::::::::::;;+:+xX+xxXxXXXXXxxxx++xxxXXXXXXx+xx;;:++xxxXXXXxxxx++... .. ..::..:.::..::++XxXXXX$XXXxXx+xx++xxXXXXXXX+x;;;xXXXX+XXXXxxxx++.... ...... .::;... ....::;;+XXXXX$$XXXXX+xxxxx+xxX+++XX++++xXXXXX+X$XXXxxx+++......... . ..::::: :...:;+:;;xXXX$$$XXXxxxxxxxxxx$$$$$x;;xXXXXXXXX$$XXXxxxx+x+:..:... . . .. .:::;.:::::;;;:;;+x$$$XXXXX$+++x++++$$$$+++xXXXXXXX$X$$XXXXxx+xxx+:..:..... . . . . ::;:..::;;:::.:;++$$$$$XXXX+++;::::$$$++XXXXXXXXXXXX$$XXXXxxx+XxXx::......... .. . ...:+.:.;::;;::.::.;:x+$$$$$$$x;:;:::Xx+++XXXXXXx$$XX$$$$XXXXXxxxXXx+x:........ ..... .:::.x:.:::;;;:.:.::;;;;;;;;;;;;++;:;:++XXXXX$XX$X$$XXX$$XXXXXx;;;XXX:::............:. .::;;;++.;;:;:;.;;:+x;;;;;;;;;;;;;;;;x+XXXXX$$$X$$$X$$$$;+xx+++;++;;;::.:............. . ...:X+:::+:;:;+;+;::xxx;;;;;;+;;;;;;+xX$$$$$X$$$$Xxx$x$$XXXXXX+X;x+;::::::::::........ . :x$::x...:;..++x;++:+xxXxx:::;;;;++++++x$Xx+xX$$$$XX$$$$$XXXXXxXX+x;::::::::::........ .. . . X.:;;++;;;x+x+;;++;;;xxxxxXX:;;+++xxxxxx$$$$$$$XXxxX$$$$$$$$XXxX$$x;;:;:::::::::.......... X;;;.+xxx+x;+++xX+XxxXxXxXxXXxxxxxxxXXxx$$$&&$XXXXXxXX$$$$$XX$$$$$$x;;:;::::::::::........ x x;;;++++;+xx+x$$xx+x$XXxXXXxXxXxxxxXxxXX$$$&&$$$$$$$XXX&$$$$$xx$$&$$x:x:;;;::::::::........... ;X;+;;+x;+x+;xx+xX$$XXXXXXXXXXXxxxxXx$$$$$$$$&&&&&&$$&$&$$X&XXxx&&X&$X+xxxx++::;;:........: . . +xx;;;;xXx++XxXxx$xx$$XXXXXXXXX+xxxXxX$$$$$$&&&&&&$&&&&&&&&&&$$x+&&$$$X;;+;;::::::.:......... ;:X:.. xxx X. .:X+x$$$$XXXXXXXxx++XXX&&&&&&&&&&&&&&&&&&&&&&&&$$$x$&$xxX+xxx:;;::::::....:... .... : :+x+xxXx+x++x+$$$$$$$XXXXXXXx+xxxX$$&&&&&&&&&&&&&&&&&&&&&&&&$Xxx&&xx$;;;;;;+;+x:;.:.......::::. ;;:x:..;+XXxXxXXX$X$$$$X$$$&&XXXx+xxX$$&&&&&&&&&&&&&&&&&&&&&&&&&&&&&$x&X&x+x;;;;;X;;;;;;;::::::... . .:;+X++X+xXxXxX$X&$$$$$$$$$$&&XXxXXX&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&$X+$X+xxx++x;:;;;;;;:::::::..... $+:;+;+x++X+xXX+xx&&$$$$$$&$$&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&xxx$xX;;+x+++++;x;;:::::::::::.. x.:::x;+;xXx;x:$:xX$$$$$$$$$&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&$XXX$$$$$$$$X;++++++++x:;::::::::: xx:;;;X++xX++;xx+xX$&$$$$X$$&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&$XxXX&&&&$X$$XXXxx;++++++. ...::::: ;xX:;::x;xX;X;;;X++$XXXXXXX$&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&$XXX$X$$$$$X$$$$XXx;;:;..:::::::::: ;;;+;..::xX.:X;++XxxXXX$$$&$&&&&&&&&&&&&&&&&&&&&&&&&$&&&&&&&&&&&&$XXxX$X$$$$XX$X$X;::::;;:.;;::::::: ::;+;x:.:;xXx:X;;;+xxxXX$$$$$$&&&&&&&&&&&&&&&&&&$$$$$$&&&&&&&&&$&X++++++xxXXXXXx;:;:....:::;;;..;::+ ;:;:+$+:;+xxx;+xX+Xx$XXXX$$$$$&&&&&&&&&&&&&&&$$$$XXXXX&&&&&&&&&&&$$$X$$XXXXXX&+::.::.........:.:::+X +::;;;X+:+xx;;x+XX+XxxXXXXX$$$&&$$$$$$$&&&&&&$$$XXXX$$&&&&&&&&&&&&&&&$$XX$XxX+;:;;;;;............Xx+ :;;::.;:Xxx$::;;xx++xx+X$X$XX$XX$$$$$$$&$&&&&$$$X$$$$$&&&&&&&&&&&&&&&$$$X;XXXX::;;;;;;..........X++; +::::::;;;xXx:.;:x++XXXXxXXXX$$XX$&$$$$$$$&&&$$$$XXXXX&&&&&&&&&&&&&&$$XXX$$X;+;;;+xxx+:.......:$+++; +;;::;;::xxx+:;;;+XXXX$xXXXX&$XXXXX$$X$$$$$$$$$XXxXxX$$&&&&&&&&&&&&&&$$$$$;;:;+xXXXX$$$X+....+x++x;; x++x:x;:.:x;+;xXx+xxXXXXXX$x$XXxX$$$$$$$$$$$$$$XXXXXX$$$$$&&&&$&$X$$$XX$$XXxxxX$$$$$$XXxxX; ++++;::: xxx;+;;;x::$X$xxx;xxXx$$xxXXx$$$$$$$$$$$$$$$$$$XXXXX$$$X$$$$$$Xx$$$$$xXXXX$XXxX$$$$$$$$XXX+$++;;:;:+ x++x+x;+x:;+x+x;+xxxxxXxX$XxX+x$$$$$$$$$$$$$$$$XXXXXX$$$$$$$xX$$$$$X$$$$XXXXXx$$$$$$$$XX+;x+++++;;;; X;.;;;:x:;+:+$x+;;+xxxxxXx+xXxxX$$$$x$$$$$$$$$$$XXXXX$X$XxxXXX$$+xXX$$$XXX$$$$$$$$$$$$$$$+++;+:;;;;; +;+;;:+:+;;.+xX+x++++x+xxxxxXxxx+XX$$$$$$$$$$$$XXXXXxX+xxxxXXx+++xxXXXXXXX$$$$$&&&$$$$x+;;;.+;;;:+:. +....;::x:;;;;;;X++x+xx+X++x++X+x;+$$X$X$$$$$$$$xX++++xxx+x+xx+x+xxxxXXX$$$$$$&$$$$$xx+;;:+;:;:++;:: $.;;;:.:++++++;x+X;x++xxxx+xx+++x:;+$$Xxxx$$xX+++++x++;;+;;+xxxXxxxX$$$$$$$$$$$$$$$+;;.::;::;:;::... +:;;+++xx;++;++++xx;;++x++xX++++;::;+XXXX+++++++++;;;;;;+++xxXXXXX+++$$$$$$$$$$$$++;;;;:..::.x:...x. +::.:.+:;:+++;;+;++$;xxxx++xx+xx+;:;;;;+;;;++;;;;;+++++xx+xxxXXxxx+++++x$$$$$$$$$$+;;;;;;;::...:....